US008756692B2

a2 United States Patent

Williams

US 8,756,692 B2
Jun. 17, 2014

(10) Patent No.:
(45) Date of Patent:

(54)

(735)

(73)

@
(22)

(65)

(60)

(1)
(52)

(58)

CONTROLLING NETWORK-BASED
APPLICATIONS WITH SOCIAL MEDIA
POSTINGS

Inventor: Tia Williams, Atlanta, GA (US)

Assignee: Eureka! It Works, LL.C, Atlanta, GA

(US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

Appl. No.: 13/316,282

Filed: Dec. 9, 2011

Prior Publication Data
US 2013/0014258 A1 Jan. 10, 2013

Related U.S. Application Data

Provisional application No. 61/504,872, filed on Jul. 6,
2011.

Int. CI.

GOGF 11/00 (2006.01)

U.S. CL

USPC e e 726/24
Field of Classification Search

USPC oo 726/22-25;705/319, 14.73

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

2009/0048904 Al* 2/2009 Newtonetal. 705/10
2011/0113084 Al* 5/2011 Ramnani 709/201
2011/0213670 Al* 9/2011 Struttonetal. 705/14.73
2011/0295612 Al* 12/2011 Donneau-Golencer

etal. o 705/1.1
2012/0246097 Al* 9/2012 Jain et al. .. 706/12
2012/0297477 Al* 11/2012 Ravivcceoovveveierenrnnne. 726/22

* cited by examiner

Primary Examiner — Brandon Hoffman

Assistant Examiner — Anthony Brown

(74) Attorney, Agent, or Firm — Law Office of Dorian
Cartwright

(57) ABSTRACT

A content posting associated with a user of the social media
service and including an embedded command is received.
The posting can be submitted to the social media service as a
status update or message to the social media account associ-
ated with the application. The content posting is processed to
generate a request to one or more data sources to query for
information or perform an action (e.g. update a data record).
The response is parsed to extract data values which are
inserted into pre-configured templates in accordance with the
characteristics of the response delivery method preference set
by the user and stored in a application user profile.

14 Claims, 7 Drawing Sheets

Y
=

DEVICE
110

USER COMPUTING

P ™

NETWORK
SocIALMEDIA |—» 199
SERVERS — DATA RESOURCES
120 o« S 140
e
,_a.f"‘/
APPLICATION

130

COMMAND SERVER

U.S. Patent Jun. 17,2014 Sheet 1 of 7 US 8,756,692 B2

USER COMPUTING
DEVICE
110

1 f, X
1 ! NETWORK 1
SocIAL MEDIA _—>’\> 199
SERVERS P _ DATA RESOURCES
120 L 140

APPLICATION
COMMAND SERVER
130

FIG. 1

U.S. Patent Jun. 17,2014 Sheet 2 of 7 US 8,756,692 B2

USER COMPUTING DEVICE
110

NETWORK BROWSER
210

SociAL MEDIA CLIENT
220

FIG. 2

SocIAL MEDIA SERVER
120

USER PROFILE DATABASE
310

ACTIVITY FEED GENERATOR
320

AP INTERFACE
330

FIG. 3

U.S. Patent

Jun. 17, 2014 Sheet 3 of 7

APPLICATION COMMAND SERVER
130

USER PROFILE DATABASE
410

SOCIAL MEDIA INTERFACES
420

COMMAND PROCESSING ENGINE
430

COMMAND PARSER
432

CODE GENERATOR
434

DATA SOURCE QUERY MANAGER
436

RESPONSE HANDLER
438

FIG. 4

US 8,756,692 B2

U.S. Patent

USER COMPUTING
DEVICE
110

Jun. 17, 2014 Sheet 4 of 7
APPLICATION
SociaL MEDIA COMMAND
SERVER SERVER
120 130
T Ty
] 510
—
_ ¢/////////51_5
T T
525 |
P
s,
| 535
.
k/////////aﬁ
T 550

FIG. 5

US 8,756,692 B2

DATA RESOURCES
140

U.S. Patent

Jun. 17, 2014 Sheet 5 of 7

|o2
o

US 8,756,692 B2

STAR
605

LINK APPLICATION USER PROFILE TO
SocIAL MEDIA ACCOUNT OF THE USER
610

v

SuBMIT POST TO SoCIAL MEDIA SERVICE,
THE POST INCLUDING AN EMBEDDED COMMAND
620

Y

RETRIEVE POST AND PROCESS COMMAND
USING DATA RESOURCES
630

FIG. 6

U.S. Patent

Jun. 17, 2014 Sheet 6 of 7

Cagz >

(=2
(=]

US 8,756,692 B2

MONITOR PosTs FOR USER
710

DETECT SOCIAL MEDIA
PosT FOR USER?
720

PRE-PROCESS COMMAND
EMBEDDED IN POST
730

l

QUERY DATA SOURCE
IN ACCORDANCE WITH COMMAND
740

!

PosT-PROCESS QUERY RESULTS
750

ONTINUE MONITORING
PosTs?
760

FIG. 7

U.S. Patent Jun. 17,2014 Sheet 7 of 7 US 8,756,692 B2

Co
o

MEMORY
810

NETWORK
APPLICATIONS
812

OPERATING SYSTEM
814

I

A A A

v

o

899

\ 4 Y v

PROCESSOR I/O PORT
820 HARD DRIVE £40
830 USER NETWORK
INTERFACE | | INTERFACE
842 844

FIG. 8

US 8,756,692 B2

1
CONTROLLING NETWORK-BASED
APPLICATIONS WITH SOCIAL MEDIA
POSTINGS

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of priority under 35
U.S.C. 119(e) as to U.S. Application No. 61/504,872, filed
Jul. 6, 2011, entitled CONTROLLING NETWORK APPLI-
CATIONS WITH SOCIAL MEDIA NETWORKS AND
BLOG POSTINGS, by Tia Williams, the contents of which is
hereby incorporated by reference in its entirety.

FIELD OF THE INVENTION

The invention relates generally to network applications,
and more specifically, to controlling network applications by
processing commands embedded within social media post-
ings.

BACKGROUND OF THE INVENTION

The advent of social media networking and blogging has
created convenient new channels for cloud communication
with friends. Generally, social media networks and blogs are
user driven in that individuals provide the content and control
the information exchange. For example, a Twitter or Face-
book user has an individual profile page that shows their
personal activity stream of content postings and the activity
streams of their network of friends. One popular way of
sharing information is through a status update which can be
posted and shared with their entire network of friends, or sent
directly to an individual friend or group.

Plug-ins for content management systems and other shar-
ing scripts allow content publishers to embed sharing func-
tionality into their websites. This allows users to share content
with members of their social media network or readers of
their blog. Typically, this is limited to the URL at which the
content was found. For example, if the user has found an
interesting article and would like to post the URL of the
article on their social media network or blog, the user selects
the respective function if the content publisher has imple-
mented a sharing plug-in or script.

If'sharing functionality is not available on a website and the
user would like to share content found on the website with
members of their social media network or readers of their
blog, the user has to manually copy and paste the desired
block of content or the URL at which the content was found,
and then manually post it as an update to their social media
network or blog. For example, if the user would like to share
the weather forecast for an upcoming outdoor event with
members of their social media network or blog, the user must
first perform a manual query on the website of a weather
forecast provider. If sharing functionality is not available, the
user must copy and paste the actual contents of the forecast or
the URL at which the forecast was found, and post it as an
update to their social media network or blog. These opera-
tions are even more difficult for the users of mobile devices.

What is needed is a technique to automate the request,
update, and delivery of dynamic information by processing
commands embedded in social media postings.

SUMMARY

To meet the above-described needs, methods, computer
program products, and systems to process commands that

20

25

30

35

40

45

50

55

60

65

2

control a network-based application running in conjunction
with a social media service are provided. For example, a user
can embed a command within a social media posting to query
deals and coupons and share the results with their followers.
In another example, a user can embed a command within a
social media posting to make a monetary donation to a non-
profit institution or political campaign and share a confirma-
tion of the donation with their followers.

In one embodiment, a social media posting containing a
command is received. The posting can be submitted to the
social media service by a user as a status update which
updates the activity feed of the user, or as a message sent to the
social media account associated with the application. The
social media posting containing a command is processed to
generate a query to one or more data sources.

A response to the query comprising data from the data
source(s) is received. The response is formatted in accordance
with characteristics of the response delivery method, which
can include a social media service or other delivery method.
In some embodiments, the formatted response is then sent to
the social media service or other response delivery method for
delivery. Other response delivery methods can include non-
social media services. For example, a user can receive a
response as an SMS to their cell phone or as an update to an
RSS feed that can be parsed and the results displayed in a web
page or RSS reader.

Advantageously, a social media user can quickly and auto-
matically update their activity feeds with dynamic data and
share that data with their friends and followers. Moreover,
users of mobile devices and/or Internet appliances with lim-
ited input capabilities can simplify complex tasks with fewer
keystrokes.

BRIEF DESCRIPTION OF THE DRAWINGS

Inthe following drawings, like reference numbers are used
to refer to like elements. Although the following figures
depict various examples of the invention, the invention is not
limited to the examples depicted in the figures.

FIG. 1 is ahigh-level block diagram illustrating a system to
control network-based applications through social media
postings, according to one embodiment.

FIG. 2 is a block diagram illustrating a user computing
device in more detail, according to one embodiment.

FIG. 3 is a block diagram illustrating a social media server
in more detail, according to one embodiment.

FIG. 4 is a block diagram illustrating an application com-
mand server in more detail, according to one embodiment.

FIG. 5 is a sequence diagram illustrating interactions
between components of the system of FIG. 1, according to
one embodiment.

FIG. 6 is a flow diagram illustrating a method for control-
ling network-based applications through social media post-
ings, according to one embodiment.

FIG. 7 is a flow diagram illustrating a method for process-
ing commands, according to one embodiment.

FIG. 8 is a block diagram illustrating an exemplary com-
puting device, according to one embodiment.

DETAILED DESCRIPTION

The present invention provides methods, computer pro-
gram products, and systems to process commands that control
a network-based application running in conjunction with a
social media service. For example, a user can embed a com-
mand within a social media posting to query deals and cou-
pons and share the results with their followers. In another

US 8,756,692 B2

3

example, a user can embed a command within a social media
posting to make a monetary donation to a non-profit institu-
tion or political campaign and share a confirmation of the
donation with their followers.

FIG. 1 is a high-level block diagram illustrating a system
100 to control and/or instruct a network-based application to
perform an action through a social media posting, according
to one embodiment. The system comprises a user computing
device 110, social media servers 120, an application com-
mand server 130, and data resources 140. The components are
each coupled to a network 199, such as the Internet or a
cellular network, through any suitable wired (e.g., Ethernet)
orwireless (e.g., WiFi or 3G) medium, or combination. Addi-
tional network components within a communication channel
are possible (e.g., firewalls, virus scanners, routers, access
points, etc.).

The user computing device 110 can be, for example, a
personal computer, a laptop computer, a tablet computer, a
smart phone, a mobile computing device, an Internet appli-
ance, or the like. A user can employ the computing device 110
to interact with social media services and other resources
available on the network 199. In one embodiment, the user
logs on to Twitter to post content to be read by their followers,
and to review content postings made by other Twitter users. In
another embodiment, a post made by the user include a com-
mand intended to instruct a remote network-based applica-
tion to perform a corresponding action. One possible action is
to automatically publish results on a social media service.
Thus, the user computing device 110 can also be used to view
the results of application processing initiated by the user,
which can be read by their social media followers.

The social media servers 120 includes one or more indi-
vidual social media servers corresponding to one or more
social media services. As used herein, social media refers to
any type of cloud-based content system for interaction with
other users. For example, social media networks such as
Twitter and Facebook allow users to build networks by fol-
lowing other users. In turn, the users can be followed them-
selves. The content postings of the user, as well as their
actions, and other user profile information is published and
can be accessed by others. Further, an aggregated chronologi-
cal feed publishes content postings, actions, and other infor-
mation on a rolling basis. This allows a user to be quickly
updated with the latest information from members of their
social media network. In another example, blogs such as
WordPress and Tumblr allow a user to publish information
beyond a specific social media network. In still another
example, social media networks can be integrated within
other applications such as discussion forums, online video
games, network-based music services, and the like.

While the embodiments primarily described in detail
below are in connection with the Twitter platform for social
media, this is only an exemplary implementation. Other
embodiments can use, for example, Facebook, MySpace,
Ning, FourSquare, LinkedIn, WordPress, Tumblr, Google-F,
Movable Type, LiveJournal, Type Pad, instant messenger
applications, or the like.

Messaging functionality available on the Twitter platform
can include “direct message”, “@reply”, and “re-tweet”.
Direct messaging allows a user to send private messages to
one or more of their followers. In order to send a direct
message, the user usually must have direct messaging
enabled on their Twitter account. In that case, a user cannot
send direct messages to a secondary user who is not “follow-
ing” them. Following another user simply means subscribing
to their Twitter updates.

20

25

30

35

40

45

50

55

60

65

4

Sending an @reply allows a user to specifically address
messages to a secondary user. The messages are public and
not private as in direct messaging. Sending an @reply does
not require users to follow each other. However, the second-
ary user can view the message on their timeline if following
the user that sent them the @reply. A timeline is a stream of
content postings or tweets listed in chronological order and
available on the homepage of the user after logging in to
Twitter.com or 3rd party Twitter application. The timeline is
also available as an RSS feed. Unless the user is blocked, the
secondary user can view the message on their replies tab after
logging in to Twitter.com or 3rd party Twitter application.
Re-tweeting a message allows a user to forward a content
posting or tweet to their own followers.

The system 100 takes advantage of the messaging capa-
bilities of Twitter and adds smart functionality to execute
prescribed commands contained within them. Other social
media networks such as WordPress or Tumblr do not cur-
rently provide native messaging capabilities. However, other
methods of content post ingestion can allow for the execution
of prescribed commands by the system 100. For example,
plug-ins installed through the administration panel of Word-
Press could allow the system 100 access to content postings
containing commands. An alternative method is for the sys-
tem 100 to ingest the WordPress RSS feed for the blog. One of
ordinary skill in the art would be able to apply the disclosure
herein to future post ingestion improvements to Twitter and
other social media networks.

In some embodiments, applications can be configured to
operate in conjunction with a social media platform. For
example, applications can allow users to track data such as
stock performance, sports scores, and weather forecasts.
Users can play video games, plan events, perform financial
transactions, and manage media galleries, just to name a few.
In one embodiment, a user posting on one of the social media
servers 120 provides a command to an application, as
described in more detail below.

The application command server 130 automates the
request, update, and delivery of dynamic information by pro-
cessing commands embedded in social media postings. To do
s0, the application command server 130 identifies commands
embedded within posts of registered users by monitoring
Twitter direct message and activity feeds. Once a command is
processed and executed, the results can be sent back to a user
(or to another user, or automated system), distributed to a
group, published on one of the social media services, or
delivered through another response delivery method. For
example, the results can be published as a content posting or
tweet to the Twitter account of the user or published as a status
update on the Facebook page of the user. In both cases, the
activity feeds of the users on the respective social media
networks are updated with the dynamic information con-
tained within the post.

The command can be of varying formats. Moreover, the
command can be composed of text and/or multimedia. For
Twitter, a command in the form of a text direct message string
can be up to 140 characters of length (including addressing of
the direct message to the Twitter account associated with the
application).

The data resources 140 can be a database, a web service, or
any other information resource. The data resource 140 can be
internal to, or external to, the system 100. External resources
such as Google APIs are leveraged to generate a request or to
query data as determined by the command. Native resources
can be integrated for compatibility or customization.

FIG. 2 is a block diagram illustrating a user computing
device 110 in more detail, according to one embodiment. The

US 8,756,692 B2

5

user computing device 110 includes a network browser 210
and a social media client 220. Additional general components
can also be included, as described below with respect to FIG.
8.

The network browser 210 can be any standard or mobile
browser such as Internet Explorer, Mozilla Firefox, Google
Chrome, Apple Safari, or any HTML rendering application
with networking capability. The network browser 210 can be
a stand-alone application or integrated within another domi-
nant application. Using the network browser 210, a user can
access cloud-based social media services to submit postings,
and review the postings of others.

The social media client 220 can be a mobile application
that provides direct access to social media services, as
opposed to the generic platform of the network browser 210.
In one example, a Twitter client is downloaded to a mobile
phone as a mobile application. A user initiating the Twitter
client can access the service with less keystrokes and have
access to the functionality most commonly used in the net-
work browser 210.

FIG. 3 is a block diagram illustrating the social media
server 120 of FIG. 1 in more detail, according to one embodi-
ment. The social media server 120 has a user profile database
310, an activity feed generator 320, and an API interface 330.
Additional general components can also be included, as
described below with respect to FIG. 8.

The user profile database 310 stores information for regis-
tered users. Individual user profiles are created during regis-
tration to store general information such as name and prefer-
ences. Additionally, the user profile indicates other users that
are part of a social media network such as followers or
friends.

An application can also have a user profile. The followers
are users that have registered with an application as described
in more detail below.

The activity feed generator 320 aggregates the activity of
members within the social media network of a user on the
social media platform. For example, Twitter content postings
ortweets can be aggregated in a timeline, allowing the user to
quickly be updated with the latest content postings from
members they are following.

The API interface 330 creates a communication channel
between the social media server and clients (e.g., the appli-
cation command server 130 of FIG. 1). Twitter exposes its
data via Application Programming Interfaces (APIs). Cur-
rently, there are three APIs available for retrieving and modi-
fying Twitter data: two distinct Representational State Trans-
fer (REST) APIs, which allows access to core Twitter data,
including timelines, status updates, and user information; and
one Search or Streaming API which allows public Twitter
updates to be searched programmatically in real time and at
high volume. All of the APIs use the GET and POST methods
of the HTTP protocol to retrieve and modify data and are
available in numerous programming languages, including
C++, Java, JavaScript, PHP, Perl, Python, Ruby, etc.

Preferably, in order to use the Twitter APIs, an application
is first registered with Twitter. Upon registration, a unique
consumer key and secret code is generated and assigned to the
application. The key and secret code, in conjunction with the
Open Authentication Standard (OAuth) library in the chosen
programming language, are used to sign requests made by the
application to the API. This signing process allows Twitter to
identify the application and the traffic coming from it. In other
embodiments, additional toolkits are used, such as the @Any-
where JavaScript framework, which is used to integrate Twit-
ter functionality into websites.

20

25

30

35

40

45

50

55

60

65

6

FIG. 4 is a block diagram illustrating the application com-
mand server 130 of FIG. 1 in more detail, according to one
embodiment. The application command server 130 includes a
user profile database 410, social media interfaces 420, and a
command processing engine 430. Additional general compo-
nents can also be included, as described below with respect to
FIG. 8.

The user profile database 410 maintains profile informa-
tion for registered users. According to one embodiment, the
user profile stores parameters that allow for customization of
the application by the user and allows the application access
to the user’s profile on one or more social media services. A
user creates a user profile during a registration process, and
can subsequently update the parameters stored within it. The
user profile stores general information about a user (e.g.,
name, email address, billing information if applicable) and
also stores preferences for an application (e.g., response
delivery method, content and subscription options).

In one embodiment, selection of ‘Follow’ functionality on
the web page of the application or Twitter web page associ-
ated with the Twitter account of the application triggers the
registration process. In another embodiment, a user follows
the Twitter account associated with the application in order to
register with the application, and then the application auto-
matically follows back the Twitter account associated with
the user. As a result, the user can send messages containing a
command directly to the application, or the application can
identify commands posted to the activity stream of the user
that are not included within direct messages. Although not
required, enabling the application to automatically follow
back the Twitter account associated with the user allows the
application to send a direct message back to the user as an
optional response delivery method. If the Twitter account
associated with the application does not follow the Twitter
account associated with the user, the application cannot send
direct messages to the user.

For Twitter, the use of OAuth gives the application com-
mand server 130 the ability to act as a proxy on behalf of the
user. The two-step process includes authentication and autho-
rization. During authentication, a user provides a username
and a password for a Twitter account. During authorization, a
user grants an application privileges to user their Twitter
account in conjunction with the Twitter REST and Search or
Streaming APIs.

The social media interfaces 420 retrieve postings from
social media services. The postings are typically pulled using
GET methods supported by the interfaces. Some social media
services use rate limiting to prevent abuses in data traffic.
Currently, Twitter limits unauthenticated GET methods, but
loosens the limits for authenticated GET methods by regis-
tered applications (e.g., 150 unauthenticated GET requests
per hour versus 350 authenticated GET requests per hour).
Further, a white listed application can be configured for even
greater access (e.g., 20,000 GET requests per hour). Cur-
rently, POST methods are not rate limited.

Additionally, the social media interfaces 420 can provide
general communications with social media services.
Examples include registration of an application with the a
social media service, and delivery of results. Other general
communications include configuration of polling intervals,
API updates, data synching, and the like.

The command processing engine 430 further comprises a
command parser 432, a code generator 434, a data source
query manager 436, and a response formatter 438. From one
perspective, the command processing engine 430 operates
according to an input process and an output process. The input
process (or ingestion, analysis and assimilation process)

US 8,756,692 B2

7

retrieves and pre-processes commands contained in posts
using the command parser 432, the code generator 434, and
the data source query manager 436. The output process post-
processes commands and delivers the results from the query
also using the data source query manager 436 along with the
response handler 438.

More specifically, the command parser 432 pre-processes
commands contained in posts by filtering extraneous infor-
mation, and then separating commands from data values. For
example, one exemplary format using the Twitter direct mes-
saging functionality uses the following format:

d username command parameter(s)

or

dm username command parameter(s)
where, ‘d’ or ‘dm’ is the prefix for sending a direct message
via Twitter, ‘username’ is the Twitter account associated with
the application command server 130, ‘command’ is the pre-
scribed command as defined by libraries, and ‘parameter(s)’
is additional criteria needed to executed the command (e.g.,
data values).

The output of the pre-processing of commands is a series of
tokens. The command parser 432 analyzes and matches
tokens to code fragments stored in a library unique to the
application domain. The code generator 434 assimilates the
code fragments associated with the tokens into executable
code using assimilation definitions and rules. The executable
code is in a generic form. It is the data source query manager
436 that adapts the code to a specific data source, thereby
making the code data source-specific. In one embodiment,
multiple web services APIs may be queried to perform an
action as instructed by a command, resulting in multiple
versions of code. More particularly, the generic form of the
code is modified to account for one or more web service APIs
or other specific formats as needed by the data source 140. For
example, Groupon has specific APIs that can be used to per-
form data search operations that may require a different query
format than DealMap. The determination of which data
source to use is made by the assimilation definitions and rules.
The data source query manager 436 modifies the formatting
of the request from its generic form to be specific to the data
source(s) and delivers the request to the data source(s).

As part of the output, the data source query manager 436
manages data results received from the data source 140. The
response handler 438 formats the data results in accordance
with a particular social media service or other response deliv-
ery method (e.g. SMS or RSS feed). In one embodiment, the
response delivery method is configured as a preference by the
user and stored in their user profile. If the response delivery
method is Twitter, the results are put into the format of a tweet
for general publication or limited publication to a certain
group. The results can be delivered using the social media
interface 420. Otherwise, the response handler 438 can
deliver results using alternative channels (e.g., SMS message
or RSS feed). Additional details associated with the applica-
tion command server 130 are set forth below in association
with FIG. 7.

The application command server 130 of FI1G. 4 is merely an
exemplary implementation. Given the disclosure herein,
additional implementations are possible within the scope and
spirit of the present invention. Other possible components to
enhance the application command server 130 include, but are
not limited to, a queue manager, a load balancer, an API rate
monitor, an ingestor, a multimedia decoder, a lexical parser, a
semantic analyzer, an assimilator, a federated web services
engine, a printer, a response delivery engine, and a cache
engine.

20

25

30

35

40

45

50

55

60

65

8

FIG. 5 is a sequence diagram illustrating interactions 500
between components of the system of FIG. 1, according to
one embodiment. Processes and actions that occur within the
components are discussed above and below.

During a set up stage, a user at the user computer device
110 first registers 505 with the social media server 120 to
create a social media account thereby creating a user profile
with the social media service. Next, the user at the user
computer device 110 registers 510 with the application com-
mand server 130 to create a user profile with the application.
One of the preferences causes 515 a link to be created
between the social media account associated with the user
and the social media account associated with the application.

During an ingestion and processing stage, the user at the
user computer device 110 submits 520 a post to their social
media account with an embedded command. The post can be
of the form of a status update or a message sent to the social
media account associated with the application command
server 130. Periodically, the application command server 130
polls 525 the social media server 120 to pull 530 new user
posts containing commands using GET methods through the
API interfaces of the social media service. The application
command server 130 then analyses the posts for commands in
order to assimilate the command into executable code.

During an execution stage, the application command
server 130 executes the code by sending 535 a request or
query to one or more native or third-party data resources 140.
Finally, the application command server 130 receives 540 a
response which is then parsed and formatted for publication
545 to the social media server 120 or other response delivery
method. The user and others can then view 550 results from
the user computer device 110 and other devices.

FIG. 6 is a high-level flow diagram illustrating a method
600 for controlling network-based applications through
social media postings, according to one embodiment.

At step 610, an application is linked to the social media
account associated with the user. In one embodiment, a Twit-
ter user selects a ‘Follow’ function implemented on a web
page using the @Anywhere JavaScript framework and
OAuth. If the user is not registered with the application and is
not logged in to Twitter, the user provides their Twitter
authentication credentials, and authorizes the application to
act as a proxy on behalf of the user. The user can set prefer-
ences and provide additional information that is stored in a
user profile that is created by the application. For example, the
user can select and/or configure response delivery methods to
be either a private direct message, a public tweet, a public
@reply, a public post to a different social media service, a
public post to an RSS XML file, or a private SMS message
sent to a cell phone. To optionally select a private direct
message as a response delivery method, the user grants per-
mission to initiate the ‘Auto Follow Back’ function. This
function invokes the friendship/create method of the Twitter
API, which allows the Twitter account associated with the
application to follow the Twitter account of the user.

At step 620, a post is submitted to a social media service as
a status update or message sent to the social media account
associated with the application. The post includes an embed-
ded command. In one example, a Twitter user sends a direct
message to the Twitter account associated with an application
containing a command.

At step 630 posts are retrieved and commands are pro-
cessed and executed, generating queries and requests to inter-
nal and external data resources. The formatted results are
delivered to a social media service or other response delivery
method (e.g. SMS or RSS feed). Additional details associated
with step 630 are detailed in FIG. 7.

US 8,756,692 B2

9

FIG. 7 is aflow diagram illustrating the method 630 of FIG.
6 for retrieving and processing commands, according to one
embodiment.

At step 710, posts in the form of status updates or direct
messages sent to the social media account associated with the
application are monitored. Methods within the APIs provided
by the social media service are used to poll for new posts.
Posts sent via Twitter containing commands are preferably
retrieved from the direct_messages method of the Twitter API
for the social media account associated with the application.
Although not the preferred method, posts from registered
users can be retrieved from the activity feed of the user. The
polling periods can be evenly distributed or modeled based on
historical maximum and minimum usage times for the social
media service.

Atstep 720, if a social media post containing a command is
detected from a user, the process continues to step 730. Oth-
erwise, if no new posts are detected, the process returns to
monitoring posts in accordance with the polling period.

At step 730, a command embedded in a post is pre-pro-
cessed. In one embodiment, a command is examined to deter-
mine if the content contains standard text, or a shortened URL
linked to a multimedia asset. Standard text can be tokenized
with comma and/or space delimiters by breaking the content
into keywords, functions, operators and/or parameters in
preparation for a semantic analysis. Multimedia associated
with a URL can also be tokenized by retrieving the file and
extracting information with a decoder in preparation for a
semantic analysis.

Tokens are mapped to functions and operators uniquely
defined for an application domain. The functions and opera-
tors, in turn, are mapped to code fragments. In some embodi-
ments, assimilation rules transform the code fragments into
executable code.

At step 740, a request is sent to a data source in accordance
with the command. A request can be a query for information
or an instruction to perform an action (e.g. update a data
record). In some embodiments, APIs associated with a data
source permit optimum compatibility of interaction with the
data source. Examples of requests include a query for the
weather forecast for a city or the sports scores for a game. In
some embodiments, multiple data sources can be interrogated
to increase the amount of relevant data. In other embodi-
ments, multiple data sources can be interrogated for different
types of data needed to satisfy a command (e.g., a current
score and a history of scores).

At step 750, results are post-processed. The results from
the data sources can be received in an XML or other suitable
format. Pre-configured templates associated with a response
delivery method are used to reformat the results for publica-
tion. For example, if the delivery response method is a public
Twitter post or tweet, a short string template is used to insert
simple name/value pairs conforming to the 140-character
limit. If the response is more complex and requires more than
140-characters or includes multimedia (e.g., image, video,
audio, interactive maps, or other multimedia formats), an
HTML template is used which is not restricted by the char-
acter limits imposed by Twitter. For example, a shortened
URL that conforms to the 140-character limit can be deliv-
ered to the user.

At step 760, if monitoring of posts is configured to con-
tinue, the process returns to step 710 to monitor for posts in
accordance with the polling period. Otherwise, the process
ends at step 795.

The following are exemplary use cases that describe imple-
mentations of the systems and methods illustrated above (all
names are fictitious):

w

20

25

30

35

40

45

50

55

60

65

10
Example 1

Weather Forecasts

Sarah is the mother of a child participating in a summer
soccer league. An avid Twitter user, Sarah posts game scores
and summaries, sharing them with her “Wildcats” Twitter
group, which includes parents of children on the soccer team,
friends, and extended family who attend the games. She
wants to share the weather forecast for the upcoming game
Saturday. Twitforecasts is a software application that allows
Sarah to request weather forecasts on demand from her Twit-
ter account.

Sarah previously visited the twitforecasts.com website to
register for the application (Twitter ID twitforecasts), and has
authenticated and authorized her Twitter account to be used
by the TwitCommand Service. During the registration pro-
cess, Sarah entered Atlanta, Ga. as her default location and
configured her Twitter account as the response delivery
method.

Sarah launches her preferred 3rd party Twitter application
on her Smartphone. In the status update field of her preferred
Twitter application, Sarah enters:

d twitforecasts July 16 wildcats

The system ingests the incoming direct message, analyzes
and processes the tokens. A query is performed against the
configured weather service API passing the variables
“Atlanta, Ga.” (configured in her user profile) and “July 16”
(contained in the command). The system returns the follow-
ing formatted response as a status update to the “wildcats”
group (contained in the command) to her Twitter account
(response method configured in her user profile):

Weather for ATL GA, Sat July 16: Partly Cloudy—Hi 91°

F./Lo 54°F.

If Sarah wants the weather forecast for the current date, she
enters the following into her status update field:

d twitforecasts today

or

d twitforecast

If a date is not specified in the command, the current date is
used by default. If a location is not specified, the default
location configured in her user profile is used. The response
for the current date would be formatted as follows:

Weather for ATL. GA Today: Currently 82° F. Partly

Cloudy—Hi 89° F./Lo 69° F.

If Sarah does not have a default location configured in her
user profile or wants the weather for a different location,
Sarah enters:

d twitforecasts chicago il july 16

d twitforecasts chicago july 16

d twitforecasts 60611 july 16

or

d twitforecasts CHI july 16
A city, state combination or zip code or airport code could be
used as the location. For popular locations, the city without
the state is accepted. The response would be as follows:

Weather for CHI IL, Sat July 16: Scattered T-Storms—Hi

83°F./Lo 42° F.

If Sarah wants a 5 day forecast for an upcoming family trip
to Orlando, Fla., Sarah enters:

d twitforecasts orlando fl Sday
The response would be as follows:

5 day weather for ORL FL: http://url
where url is a shortened URL to a webpage that contains the
5 day forecast starting on the current day. Advertising could
be placed on the webpage.

US 8,756,692 B2

11

If Sarah wants a 5 day forecast for Los Angeles, Calif.,
starting on a specific day, Sarah enters:

d twitforecasts LAX 5 day July 16
The response would be as follows:

5 day weather for LAX CA, Sat July 16: http://url
where url is a shortened URL to a webpage that contains the
5 day forecast starting on July 16. Advertising could be placed
on the webpage.

Example 2
Sports Scores

Robert is the Athletic Director for Oxford High School, a
highly competitive academic and athletic private school. The
school has developed a national following due to its success in
recruiting and preparing students for collegiate and profes-
sional athletic success.

Among Robert’s responsibilities is the public relations for
the different athletic programs at the school. He wants to send
updates to current and prospective students, faculty, alumni,
parents, boosters, media, college scouts, and fans with an
interest in the success of the athletic programs. Bleach-
erTweet is a software program that allows Robert to track and
share team performance. For basketball programs, Robert can
enter scores and the statistics of individual players, including
points, rebounds, assists, and fouls. He can enter commen-
tary, take pictures, and capture video.

Robert previously visited the bleachertweet.com website
to register for the TwitCommand Service (Twitter ID bleach-
ertweet), and has authenticated and authorized his personal
Twitter account to be used by the TwitCommand Service.
During the registration process, Robert entered the team ros-
ters and game schedules for the boys and girls varsity basket-
ball teams. As the response delivery methods, Robert config-
ured the Twitter account of the athletics department, the cell
phone number of a local television sports reporter who has
given Robert permission to send SMS messages, and an RSS
feed. The Oxford IT department embedded a JavaScript port-
let into the high school website to parse the RSS feed. Robert
has downloaded the BleacherTweet application and installed
it on his Smartphone.

Robert launches the BleacherTweet application on his
Smartphone. He selects the game “Oxford War FEagles vs.
Cambridge Tigers: November 2 @ 6 PM” from the schedule
(configured during registration). He is presented with a user
interface that allows him to enter performance statistics for
the game and individual players. As the game is played,
Robert enters the current score of 40 in the Oxford score field,
38 inthe Cambridge score field, 2 in the quarter field, and 9:12
in the time remaining field. Robert submits the entry. The
system maps the data entered by Robert to a command. His
entry of 40 in the Oxford score field, 38 in the Cambridge
score field, 2 in the quarter field, and 9:12 in the time remain-
ing field is the equivalent of:

d bleachertweet oxford 40 cambridge 38 2nd 9:12

A timestamp is attached that indicates the time that the
command was sent. The system ingests the incoming direct
message, analyzes and processes the tokens. A query is per-
formed against the APIs configured for the federation, which
could include ESPN Rise, Meridix, Sports Power (Active
Network), et al. The system returns the following formatted
response as an update to the Twitter account of the athletics
department (response method configured in his user profile):

Current Score: Oxford 40 Cambridge 38—2nd 9:12

25

30

35

40

45

50

55

60

65

12

The system returns the following formatted response as an
SMS to the cell phone of the local television sports reporter
(response method configured in his user profile):

Current Score: Oxford 40 Cambridge 38—2nd 9:12

The system returns the following formatted response as an
RSS feed that is parsed by the JavaScript portlet embedded on
the Oxford website (response method configured in his user
profile):

Current Score

Oxford (2-0)
Cambridge (3-0)

40
38

2nd 9:12

Additional information queried from data sources is pro-
vided in the RSS feed and displayed in the JavaScript portlet.
For example, the team records are displayed.

If Robert wants to add statistics for an individual player,
Robert selects a player from the roster (configured during
registration). Robert selects Jason Smith. He enters 18 in the
points field, 4 in the assists field, 6 in the rebounds field, and
9:12 inthe time remaining field. Upon submission, the system
maps the statistics entered by Robert to acommand. Robert’s
entry is the equivalent of:

d bleachertweet Jason smith 18 pts 4 ast 6 reb 2nd 9:12

A timestamp is attached that indicates the time that the
command was sent. The system ingests the incoming direct
message, analyzes and processes the tokens. A query is per-
formed against the APIs configured for the federation, which
could include ESPN Rise, Meridix, Sports Power (Active
Network), et al. The system returns the following formatted
response as an update to the Twitter account of the athletic
department (response method configured in his user profile):

Jason Smith: 18 PTS, 4 AST, 6 REB—2nd 9:12

The system returns the following formatted response as an
SMS to the cell phone of the local television sports reporter
(response method configured in his user profile):

Jason Smith: 18 PTS, 4 AST, 6 REB—2nd 9:12

The system returns the following formatted response as an
RSS feed that is parsed by the JavaScript portlet embedded on
the Oxford website (response method configured in his user
profile):

Jason Smith: 18 PTS, 4 AST, 6 REB—2nd 9:12

(21 PPG, 0.512 FG %, 2.6 RPG)

Additional information queried from data sources is pro-
vided in the RSS feed and displayed in the JavaScript portlet.
For example, Jason’s seasonal statistics are displayed.

If Robert wants to add commentary, Robert enters “JS
steals pass and returns for 2 pts” in the comments field and
9:12 inthe time remaining field. Upon submission, the system
maps the comment entered by Robert to acommand. Robert’s
entry is the equivalent of:

dbleachertweet JS steals pass and returns for 2 pts 2nd 9:12

A timestamp is attached that indicates the time that the
command was sent. The system ingests the incoming direct
message, analyzes and processes the tokens. A query is per-
formed against the APIs configured for the federation, which
could include ESPN Rise, Meridix, Sports Power (Active
Network), et al. The system returns the following formatted
response as an update to the Twitter account of the athletic
department (response method configured in his user profile):

JS steals pass and returns for 2 pts—2nd 9:12

The system returns the following formatted response as an
SMS to the cell phone of the local television sports reporter
(response method configured in his user profile):

US 8,756,692 B2

13

JS steals pass and returns for 2 pts—2nd 9:12

The system returns the following formatted response as an
RSS feed that is parsed by the JavaScript portlet embedded on
the Oxford website (response method configured in his user
profile):

JS steals pass and returns for 2 pts

Jason Smith: 18 PTS, 4 AST, 6 REB—2nd 9:12

(21 PPG, 0.512 FG %, 2.6 RPG)

Additional information queried from data sources is pro-
vided in the RSS feed and displayed in the JavaScript portlet.
For example, Jason’s seasonal statistics are displayed.

IfRobert wants to post a video, he captures a play using the
video capability of the BleacherTweet Smartphone applica-
tion (built upon native Smartphone functionality) and enters
“JS steals pass and returns for 2 pts” in the comments field and
9:12 inthe time remaining field. Upon submission, the system
maps the comment entered by Robert to a command. Robert’s
entry is the equivalent of:

dbleachertweet JS steals pass and returns for 2 pts 2nd 9:12

clipname.mov

A timestamp is attached that indicates the time that the
command was sent. The movie clip is attached to the com-
mand. The system ingests the incoming direct message, ana-
lyzes and processes the tokens. A connection is made to the
video hosting server through an API. The hosting server may
be managed by the TwitCommand Service or 3rd party host-
ing provider (YouTube, Veoh, Kaltura, et al). The movie is
uploaded to the hosting server and a URL is generated for
browser based access and streaming of the file. A query is
performed against the APIs configured for the federation,
which could include ESPN Rise, Meridix, Sports Power (Ac-
tive Network), et al. The system returns the following format-
ted response as an update to the Twitter account of the athletic
department (response method configured in his user profile):

JS steals pass and returns for 2 pts—2nd 9:12 http://url
where url is a shortened URL to a webpage that contains the
streaming video file. Advertising could be placed on the
webpage.

The system returns the following formatted response as an
SMS to the cell phone of the local television sports reporter
(response method configured in his user profile):

JS steals pass and returns for 2 pts—2nd 9:12 http://url
where url is a shortened URL to a webpage that contains the
streaming video file. Advertising could be placed on the
webpage.

The system returns the following formatted response as an
RSS feed that is parsed by the JavaScript portlet embedded on
the Oxford website (response method configured in his user
profile):

JS steals pass and returns for 2 pts

http:/furl

Jason Smith: 18 PTS, 4 AST, 6 REB—2nd 9:12

(21 PPG, 0.512 FG %, 2.6 RPG)
where url is a shortened URL to a webpage that contains the
streaming video file. Advertising could be placed on the
webpage. Additional information queried from data sources
is provided in the RSS feed and displayed in the JavaScript
portlet. For example, Jason’s seasonal statistics are displayed.
NOTE: This use case has integration potential as a plugin into
sports score and statistics equipment and software, including
but not limited to, Daktronics and Vicom. Automated rather
than manual commands could be sent by the software.

Example 3
Ticket and Event Information

Gregory is an avid Prince fan. He uses his WordPress blog
princedpres.com to update other Prince fans with news and

20

25

30

35

40

45

50

55

60

65

14

gossip, sightings, concert announcements, performance com-
mentary, photos, videos, etc. He maintains Twitter and Face-
book accounts in support of his blog, often reposting the same
information. Gregory gathers information by visiting mul-
tiple websites and querying search engines. He also receives
information via email from other Prince fans. He is constantly
looking for new information to post. Twicket is a software
application that allows Gregory to fetch news and events for
music artists.

Gregory visited the twicket.com website to register for the
TwitCommand Service (Twitter ID twicket), and has authen-
ticated and authorized his Twitter account to be used by the
TwitCommand Service. During the registration process, Gre-
gory set his subscription based query and update preferences
to once per week. Gregory configured his blog, Twitter, and
Facebook accounts as the response delivery methods.

The TwitCommand Service performs federated queries
based on Gregory’s subscription preferences scheduled at
once per week. The variable “Prince” is passed to HotTicket,
GoogleTV, Google Calendar, Google News, and other APIs
configured for the federation. The system returns the follow-
ing formatted response as an update to his blog and his Face-
book account (response methods configured in his user pro-
file):

New this Week for Prince, August 15

Prince owes $4 million for flaking out on fragrance deal
(popcrush.com)

Recording rumors sparking new album rumors (star-
tribume.com)

Morris Day on new Time album and Prince (arizonarepub-
lic.com)

Upcoming Events

August 31: Under a Purple Moon: An Evening of Prince
Music Tribute (Cleveland, Ohio)

September 1: MTV Video Music Awards (New York, N.Y.)

September 5: Aftershow @ 20/20 Club (Los Angeles,
Calif.)

October 11: Jimmy Kimmel Live (Los Angeles, Calif.)

Now Playing

Now through December 15: Purple Rain, Starz OnDemand

Pop Life Remix now in iTunes

Due to the character length restrictions for Twitter updates,
the response is formatted differently as follows:

New this week for Prince, August 15 http://url
where url is a shortened URL to a webpage that contains the
formatted results from the federated query. Advertising could
be placed on the webpage.

If Gregory wants to perform an on-demand query (non-
subscription) for a different artist and post the formatted
response to the same configured response delivery methods
stored in his user profile, he can send commands directly to
the TwitCommand Service.

Gregory launches his preferred 3rd party Twitter applica-
tion on his Smartphone. In the status update field of his
preferred Twitter application, Gregory enters:

d twicket sade

The system ingests the incoming direct message, analyzes
and processes the tokens. A federated query is performed
against the HotTicket, GoogleTV, Google Calendar, Google
News, and other APIs, passing the variable “sade” (contained
in the command). The system returns the following formatted

US 8,756,692 B2

15

response as an update to his blog and his Facebook account
(response methods configured in his user profile):

New for Sade, August 15

Sade warms souls at MGM Grand (Las Vegas Review)
Live review: Sade at the Staples Center (Los Angeles
Times)

Upcoming Events

September 7: Frank Erwin Center (Austin Tex.)

September 10: Greensboro Coliseum (Greensboro, N.C.)

October 29: Saku Arena (Sofia, Bulgaria)

November 2: Hartwell Arena (Helsinki, Finland)

November 5: New Arena (St. Petersburg, Russian Federa-
tion)

November 8: Crocus Hall (Moscow, Russian Federation)

November 16: SAP Arena (Manheim, Germany)

November 20: Lotto Arena (Antwerp, Belgium)

November 22: Arena (Zagreb, Croatia)

November 25: Wiener Stadhalle (Vienna, Austria)

Sade: the Ultimate Collection

The new 2CD+DVD bundle available now $24.99!

Due to the character length restrictions for Twitter updates,
the response is formatted differently as follows:

New for Sade, August 15 http://url
where url is a shortened URL to a webpage that contains the
formatted results from the federated query. Advertising could
be placed on the webpage.

Example 4
Voting

Tina is a huge fan of Country Idol, an amateur singing
competition. She regularly watches each season and votes for
her favorite singers. She has a Smartphone, but does not have
SMS service and cannot take advantage of the short code
SMS voting functionality. Tina has to dial a 1-866 number to
cast a vote for her favorite singer. Due to voting call volume,
circuits are typically busy and she has to dial numerous times
to cast a single vote. She is looking for a convenient way to
support her favorite singers without dialing the 866 number or
sitting in front of the Country Idol website.

Tina visited the Twitldol.com website to register for the
TwitCommand Service (Twitter ID twitidol), and has authen-
ticated and authorized her Twitter account to be used by the
TwitCommand Service. During the registration process, Tina
configured her Twitter and Facebook accounts as the response
delivery methods.

Tina launches her preferred 3rd party Twitter application
on her Smartphone. In the status update field of her preferred
Twitter application, Tina enters:

d twitidol fake

d twitido]l webber

d twitido] fake webber

or

d twitidol XXXX

A first name (if unique), last name (if unique), a combina-
tion of first name and last name, or the contestant number
XXXX (given to each contestant) could be used to vote for an
individual singer. The system ingests the incoming direct
message, analyzes and processes the tokens. A connection is
made to the Country Idol voting API passing the variable

15

25

30

35

40

45

50

55

60

65

16

“jake” and/or “webber” or “XXXX” (contained in the com-
mand). The votes for the contestants are tabulated and dis-
played live on CMT in a banner overlay. The system returns
the following formatted response as an update to her Twitter
account (response method configured in her user profile):

1 just voted for Jake Webber on Country Idol!

Final results show Wed December 8 8 PM on CMT

The system returns the following formatted response as an
update to her Facebook account (response method configured
in her user profile):

1 just voted for Jake Webber on Country Idol!

Final results show Wed December 8 8 PM on CMT

I am voting using the Twitldol system, brought to you by

Wrangler.

Join Tina and vote today!

The response includes a hyperlinked advertisement.

Example 5
Fundraising

Lisa regularly donates to her favorite organizations. She is
looking for an easier way to make donations and keep track of
her giving. TwitDonate is a software program that allows Lisa
to send, share, and track her donations. For select organiza-
tions partnered with TwitDonate, Fortune 500 companies
make matching donations.

Lisa visited the twitdonate.com website to register for the
TwitCommand Service (Twitter ID twitdonate), and has
authenticated and authorized her Twitter account to be used
by the TwitCommand Service. Lisa can only donate to orga-
nizations configured in her user profile to the maximum
threshold she sets. During the registration process, Lisa set
her maximum donation threshold amount to $100. She con-
figured her Paypal account as her payment source. From the
list of available non-profit organizations partnered with the
TwitCommand Service, she selected The American Red
Cross and the Barack Obama 2012 Presidential Campaign to
support. She added 2 additional organizations to support
which required custom configuration: Mount Vernon Presby-
terian Church and the Atlanta Animal Shelter. To add these
organizations, Lisa configured the Paypal account for each
organization and provided a nickname, “church” and “shel-
ter”. She also provided the URL for each organization. Lisa
configured her Twitter and Facebook accounts as the response
delivery methods.

Lisa launches her preferred 3rd party Twitter application
on her Smartphone. In the status update field of her preferred
Twitter application, Lisa enters:

d twitdonate obama 25
The system ingests the incoming direct message, analyzes
and processes the tokens. A connection is made to the Paypal
API passing the variables of her Paypal “userID” and “pass-
word” (configured in her user profile), the payment amount of
“25” (contained in the command), and “obama” which maps
to the Obama 2012 Presidential Campaign (configured in the
TwitCommand Service). The system returns the following
formatted response as a status update to her Twitter account
(response method configured in her user profile):

1 just donated $25 to the 2012 Barack Obama Presidential

Campaign.

The URL of partner organizations is configured in the
TwitCommand Service. Upon selection of the hyperlinked
name of the partner organization, the system displays the
website of the organization.

US 8,756,692 B2

17

The system returns the following formatted response as an
update to her Facebook account (response method configured
in her user profile):

1 just donated $25 to the 2012 Barack Obama Presidential

Campaign.
I am making my donation with the TwitDonate system.
Join me and make your donation today!
The response includes a hyperlinked advertisement.

IfLisa wants to donate to the thanksgiving food drive of her
church, Lisa enters:

d twitdonate 10 church thanksgiving food drive
The system returns the following formatted response as a
status update to her Twitter account (response method con-
figured in her user profile):

1 just donated $10 to Mount Vernon Presbyterian Church

The comment “thanksgiving food drive” is passed through
the Paypal API as special instructions which will be sent with
the payment to the church. The system returns the following
formatted response as an update to her Facebook account
(response method configured in her user profile):

1 just donated $10 to Mount Vernon Presbyterian Church

for thanksgiving food drive.

I am making my donation with the TwitDonate system.

Join me and make your donation today!
The response includes a hyperlinked advertisement.

Example 6
Deals and Coupons

Adrienne is a frugal shopper. She runs a WordPress blog,
peachdeals.com, that re-publishes deals and coupons for
products and services that women in her community might be
interested in. She and visitors of her blog provide reviews for
the products and services, as well as the merchants offering
the deals. Adrienne gathers information by collecting print
circulars and visiting multiple websites including Groupon,
LivingSocial, and DealChicken. She also receives informa-
tion from merchants via email newsletters and receives direct
email submissions from her readers. Adrienne is looking for
more deals to share. TwitDeals is a software program that
allows Adrienne to find deals for specific products and ser-
vices in her area and share them with her friends and follow-
ers.

Adrienne visited the twitdeals.com website to register for
the TwitCommand Service (Twitter ID twitdeals), and has
authenticated and authorized her Twitter account to be used
by the TwitCommand Service. During the registration pro-
cess, Adrienne set Atlanta, Ga. as her default location and set
a maximum threshold of 5 for the number of deals returned
per query based on proximity to Atlanta, Ga. She configured
her blog as the response delivery method.

Adrienne launches her preferred 3rd party Twitter applica-
tion on her Smartphone. In the status update field of her
preferred Twitter application, Adrienne enters:

d twitdeals massage

The system ingests the incoming direct message, analyzes
and processes the tokens. The tokens determine which APIs
are queried. For example, if travel related tokens are passed,
Expedia or TravelPort APIs may be invoked. If consumer
categories or product names are passed, ShopLocal, Amazon,
Groupon, Adility, CBS Local Ofters, Yipit, or DealMap (re-
cently acquired by Google) APIs may be invoked. The
Google Maps API is used to fetch maps and directions to
merchant locations. A query is performed against the APIs
configured for the federation passing the variable “massage”
(contained in the command) and “Atlanta, Ga.” (configured in

—_
w

25

30

35

40

45

50

55

60

65

18

her user profile). The system returns the following formatted
response as an update to her blog (response method config-
ured in her user profile):

Harmony Decatur

1549 Clairmont Road Decatur, Ga. 30033 404-918-9585

Get map and directions

$40 for a 1 hour Swedish massage (33% off)

Redeem October 5 only, between 9:30 AM and 7:30 PM.
Massage appointment subject to availability. Limit 1 per
person, per visit. Please call 404-918-9585 to make an
appointment.

If there is more than one match for the query, each match is
delivered as a separate blog post. Within the administration
panel of her blog, Adrienne set a status of pending for all
updates made by automated systems. This allows her to
approve automated updates before they are posted to her blog.

If Adrienne wants to search for a deal for a specific brand or
product, Adrienne enters:

d twitdeals pantene shampoo
The system returns the following formatted response as an
update to her blog (response method configured in her user
profile):

Pantene PRO-V Classic Clean Shampoo 12.6 OZ 2 for $5

(50% ofH)CVS

842 Peachtree Street, Atlanta, Ga. 30308

404-892-8468

Get map and directions

Find another location near you

Gently cleanses hair for a healthy shine. You have normal
hair. You want strong and healthy hair that shines.
Advanced Pantene Pro-V Classic Care Shampoo and
Conditioner system: is specially designed to make hair
shiny and healthy-looking from root to tip; leaves hair
manageable and strong against damage. Made in USA of
US and/or imported ingredients.

Redeem October 5 through October 12. Limit 2 per cus-
tomer.

Example 7
Product Availability and Pricing

Mark is atechnophile. He is an early adopter of gadgets and
often writes online reviews after buying them. Mark wants to
be able to find the best price for the gadgets that he is inter-
ested in and share that information with his friends. Twitgad-
gets is a software application that allows Mark to search
online and brick and mortar merchants for specific gadgets.
He can view the best prices and availability of the gadgets,
and share them with his friends.

Mark visited the twitgadgets.com website to register for
the TwitCommand Service (Twitter ID twitdgadgets), and has
authenticated and authorized his Twitter account to be used
by the TwitCommand Service. During the registration pro-
cess, Mark set Atlanta, Ga. as his default location and set a
maximum threshold of 5 for the number of matches returned
per query. He selected the option to include Internet mer-
chants and selected the option to return results based on the
lowest price. He configured the Technophile group of his
Google+ account, Twitter, and Linked In accounts as the
response delivery methods.

Mark launches his preferred 3rd party Twitter application
on his Smartphone. In the status update field of his preferred
Twitter application, Mark enters:

d twitdeals hp touchpad 32 gb
The system ingests the incoming direct message, analyzes
and processes the tokens. A query is performed against the

US 8,756,692 B2

19

APIs configured for the federation, which could include Best
Buy, Amazon, Shopping.com, Google Shopping, Yahoo
Shopping, Shopzilla, PriceGrabber, et al. The system passes
the variables “hp”, “touchpad”, and “32 gb” (contained in the
command). The Google Maps API is used to fetch maps and
directions to brick and mortar merchant locations, if appli-
cable. The system returns the following formatted response as
an update to his Technophile group of his Google+ account
(response method configured in his user profile):
HP TouchPad 32 GB Gloss Black
webOS 3.0, 1.2 GHz, 1 GB RAM, 1 year warranty
TouchPad includes essential productivity apps right out of
the box. Collaborate with colleagues using Google Docs
or Box.net. Print wirelessly to compatible networked HP
printers. And browse the full web at blazing speed with
support for the latest web technologies. The next. . . read
more
1. Best Buy $99—Limited Quantities
2537 Piedmont Rd NE, Atlanta, Ga. 30324
404-842-0938
Get map and directions
Find another location near you
2. HP Store $99—Limited Quantities
3. Amazon.com $119—33 at this price
4. Mr. Smart Shop $166—6 at this price
5. Walmart $177
1801 Howell Mill Road NW, Atlanta, Ga. 30318
404-352-5252
Get map and directions
Find another location near you
The system returns the following formatted response as a
status update to his Linkedin and Twitter accounts (response
methods configured in his user profile):
Get an HP TouchPad 32 GB here http://url
where url is a shortened URL to a webpage that contains the
formatted results from the federated query. Advertising could
be placed on the webpage.

Example 8
Technical Support

Charlie is an avid gamer. The Battlefield franchise, made
by Electronic Arts, is her current favorite. New to the recently
released Battlefield 3, she has experienced some difficulty
navigating the new interfaces and levels. Charlie wants help
on demand without having to manually navigate the different
support forums and blogs. TwitBattlefield3 is a software
application that allows Charlie to search for Battlefield help
and share the information with her friends.

Charlie visited the Electronic Arts Battlefield 3 website to
register for the TwitCommand Service (Twitter ID twitbattle-
field3), and has authenticated and authorized her Twitter
account to be used by the TwitCommand Service. During the
registration process, she selected the XBox360 as her gaming
platform. She configured the Battlefield group ofher Google+
account and her Twitter account as the response delivery
methods.

Charlie launches her preferred 3rd party Twitter applica-
tion on her Smartphone. In the status update field of her
preferred Twitter application, Charlie enters:

d twitbattlefield3 disable tanks
The system ingests the incoming direct message, analyzes
and processes the tokens. A query is performed against the
APIs configured for the federation, which could include
Battlefield 3 Forums, GamePro Playmaker, Gamespot, IGN,
et al. The system passes the variables “disable” and “tanks”

20

25

30

35

40

45

50

55

60

65

20

(contained in the command). The system returns the follow-
ing formatted response as an update to both her Battlefield
group of her Google+ account and her Twitter account (re-
sponse methods configured in her user profile):

Disable tanks in EA’s Battlefield 3 http://url
where url is a shortened URL to a webpage that contains the
formatted results from the federated query. Advertising could
be placed on the webpage.

Example 9
Education/Learning Support

Jason wants to be a web developer. He is currently taking a
course to learn the programming language PHP. Jason wants
to be able to find code samples without having to manually
search Google or refer to books. He would like to share the
code samples with his classmates and peers. TwitPHP is a
software application that allows Jason to search for PHP code
samples and share the information with his friends.

Jason visited the twitphp.com website to register for the
TwitCommand Service (Twitter ID twitphp), and has authen-
ticated and authorized his Twitter account to be used by the
TwitCommand Service. During the registration process, he
has configured the Codejunkies group of'his Google+ account
and his Classmates list of his Twitter account as the response
delivery methods.

Jason launches his preferred 3rd party Twitter application
on his Smartphone. In the status update field of his preferred
Twitter application, Jason enters:

d twitphp import csv
The system ingests the incoming direct message, analyzes
and processes the tokens. A query is performed against the
APIs configured for the federation, which could include
Google Code, Zend, PHP.NET, MSDN, et al. The system
passes the variables “import” and “csv” (contained in the
command). The system returns the following formatted
response as an update to the Codejunkies group of his
Google+ account and to the Classmates list of his Twitter
account (response methods configured in her user profile):

Import CSV in PHP http://url
where url is a shortened URL to a webpage that contains the
formatted results from the federated query. Advertising could
be placed on the webpage.

Example 10
Health and Fitness

Rachel is trying to lose 30 lbs. She has tried different diet
plans with unsatisfactory results. She has decided to join a
fitness club. Access to a personal trainer and nutritionist is
included in her membership. Also included in her member-
ship is a BetterFit account. BetterFit is a software program
that allows Rachel to track her fitness and weight loss
progress. Rachel can access her BetterFit account by visiting
the website of the fitness club and/or by downloading an
application for her Smartphone.

Rachel’s personal trainer can create workout plans for her
where she can review the plans, enter her performance (i.e.
how many reps at what weight she completed), chart her
progress, receive feedback, and order products including
workout apparel and equipment.

Rachel’s nutritionist can create a nutritional plan for her
where she can review the plans, enter her performance (i.e.
what she ate for breakfast), chart her progress, receive feed-
back, view recipes, view the nutritional content of different

US 8,756,692 B2

21

foods, and order products including nutrition bars, energy
drink mixes, water bottles, and vitamins.

Rachel can enter her weight, blood pressure, and heart rate.
She can also send messages to her personal trainer and nutri-
tionist.

Rachel chose not to download the BetterFit application for
her Smartphone. Instead she accesses her account by visiting
the website of the fitness club. One method of input to the
BetterFit application is a TwitCommand Service implemen-
tation (Twitter ID betterfit), where Rachel can send com-
mands to update the system. She has previously visited the
website of the fitness club to register for the TwitCommand
Service, and has authenticated and authorized her Twitter
account to be used by the TwitCommand Service. She has
configured her Facebook account as the response delivery
method.

Rachel launches her preferred 3rd party Twitter application
on her Smartphone. In the status update field of her preferred
Twitter application, Rachel enters:

d betterfit 155

or

d betterfit weight 155
The system ingests the incoming direct message, analyzes
and processes the tokens. A connection is made to the Better-
Fit system through an API and an update is made to her weight
passing the variable “weight” and “155” (contained in the
command). Ifacommand is not entered, the default command
for the system is “weight”. The system returns the following
formatted response as an update to her Facebook account
(response method configured in her user profile):

Congratulations Rachel! You have lost another 6 1bs! Your

total weight loss is now 15 lbs. Keep up the good work!

Rachel is losing weight with the BetterFit system. Special

membership rates now with promo code #loseweight!

The response includes a hyperlinked advertisement with a
promo code. Posting on Facebook allows her friends to “like”
and “comment” on her progress, giving her encouragement
and feedback. A multimedia enriched version of the same
command could include a picture of herself, which would be
stored in the BeterFit system and posted with the formatted
response to her Facebook account.

If Rachel wants to update her blood pressure, Rachel
enters:

d betterfit bp 120/80

Rachel configured her weight as the only value to share
with her friends on Facebook. Her blood pressure is not
shared. There would not be a Facebook update. A connection
is made to the BetterFit system through an API passing the
command “bp” and the variable “120/80” (contained in the
command). The BetterFit system is updated with the blood
pressure of “120/80” and a date and time stamp.

If Rachel wants to update her heart rate while exercising,
Rachel enters:

d betterfit hr 82 treadmill mile 2

Rachel configured her weight as the only value to share
with her friends on Facebook. Her heart rate is not shared.
There would not be a Facebook update. A connection is made
to the BetterFit system through an API and an update is made
to her heart rate passing the command “hr” and the variables
“82” and “treadmill mille 2” (contained in the command).
The BetterFit system is updated with the heart rate of “82
bpm” and a date and time stamp. The description field asso-
ciated with the entry is updated with “treadmill mile 2”.

This use case has integration potential as a plugin into
health and fitness equipment and monitoring software,
including but not limited to, Nautilus, LifeSpan, Healthrider,

20

25

30

35

40

45

50

55

60

65

22

Polar, Ironman, and AccuSplit. Automated rather than
manual commands could be sent by the software.

FIG. 8 is a block diagram illustrating an exemplary com-
puting device 800 for use in the system 100 of FIG. 1, accord-
ing to one embodiment. The computing device 800 is an
exemplary device that is implementable for each of the com-
ponents of the system 100, including the user computing
device 110, the social media servers 120, the application
command server 130, and the data sources 140. Additionally,
the system 100 is merely an example implementation itself,
since the system 100 can also be fully or partially imple-
mented with laptop computers, tablet computers, smart cell
phones, Internet appliances, and the like.

The computing device 800, of the present embodiment,
includes a memory 810, a processor 820, ahard drive 830, and
an /O port 840. Each of the components is coupled for
electronic communication via a bus 899. Communication can
be digital and/or analog, and use any suitable protocol.

The memory 810 further comprises network applications
820 and an operating system 822. The network applications
820 can be, for example, a web browser, a mobile application,
an application that uses networking, a remote application
executing locally, a network protocol application, a network
management application, a network routing application, or
the like.

The operating system 822 can be one of the Microsoft
Windows® family of operating systems (e.g., Windows 95,
98, Me, Windows NT, Windows 2000, Windows XP, Win-
dows XP x64 Edition, Windows Vista, Windows CE, Win-
dows Mobile), Linux, HP-UX, UNIX, Sun OS, Solaris, Mac
OS X, Alpha OS, AIX, IRIX32, or IRIX64. Other operating
systems may be used. Microsoft Windows is a trademark of
Microsoft Corporation.

The processor 820 can be a general purpose processor, an
application-specific integrated circuit (ASIC), a field pro-
grammable gate array (FPGA), a reduced instruction set con-
troller (RISC) processor, an integrated circuit, or the like.
There can be a single core, multiple cores, or more than one
processor. The processor 820 can be disposed on silicon or
any other suitable material. The processor 820 can receive
and execute instructions and data stored in the memory 810 or
the hard drive 830

The hard drive 830 can be any non-volatile type of storage
such as a magnetic disc, EEPROM, Flash, or the like. The
hard drive 830 stores code and data for applications.

The I/O port 840 further comprises a user interface 842 and
a network interface 844. The user interface 842 can output to
a display device and receive input from, for example, a key-
board. The network interface 844 connects to a medium such
as Ethernet or WiF1i for data input and output.

Many of the functionalities described herein can be imple-
mented with computer software, computer hardware, or a
combination.

Computer software products (e.g., non-transitory com-
puter products storing source code) may be written in any of
various suitable programming languages, such as C, C++, C#,
Java, JavaScript, PHP, Python, Perl, Ruby, and AJAX. The
computer software product may be an independent applica-
tion with data input and data display modules. Alternatively,
the computer software products may be classes that are
instantiated as distributed objects. The computer software
products may also be component software such as Java Beans
(from Sun Microsystems) or Enterprise Java Beans (EJB
from Sun Microsystems).

Furthermore, the computer that is running the previously
mentioned computer software may be connected to a network
and may interface to other computers using this network. The

US 8,756,692 B2

23

network may be on an intranet or the Internet, among others.
The network may be a wired network (e.g., using copper),
telephone network, packet network, an optical network (e.g.,
using optical fiber), or a wireless network, or any combination
of these. For example, data and other information may be
passed between the computer and components (or steps) of a
system of the invention using a wireless network using a
protocol such as Wi-Fi (IEEE standards 802.11, 802.11a,
802.11b, 802.11e, 802.11g, 802.11i, and 802.11n, just to
name a few examples). For example, signals from a computer
may be transferred, at least in part, wirelessly to components
or other computers.

In an embodiment, with a Web browser executing on a
computer workstation system, a user accesses a system on the
World Wide Web (WWW) through a network such as the
Internet. The Web browser is used to download web pages or
other content in various formats including HTML, XML,
text, PDF, and postscript, and may be used to upload infor-
mation to other parts of the system. The Web browser may use
uniform resource identifiers (URLs) to identify resources on
the Web and hypertext transfer protocol (HTTP) in transfer-
ring files on the Web.

This description of the invention has been presented for the
purposes of illustration and description. It is not intended to
be exhaustive or to limit the invention to the precise form
described, and many modifications and variations are pos-
sible in light of the teaching above. The embodiments were
chosen and described in order to best explain the principles of
the invention and its practical applications. This description
will enable others skilled in the art to best utilize and practice
the invention in various embodiments and with various modi-
fications as are suited to a particular use. The scope of the
invention is defined by the following claims.

The invention claimed is:

1. A computer-implemented method for controlling net-
work-based applications by processing commands embedded
within user-generated content postings to a social media ser-
vice, comprising:

receiving, by a computer, a content posting associated with

a user of the social media service, the posting being
submitted to the social media service as a status update
or message to the social media account associated with
the application;

processing the content posting to generate a request to a

data source, the request being a query for information or

an instruction to perform an action, comprising:

lexically parsing the content posting to identify the com-
mand,

responsive to the content posting comprising text, token-
izing a textual content posting containing the com-
mand with delimiters into tokens, the tokens compris-
ing a series of one or more of keywords, functions,
operators, and parameters,

responsive to the content posting comprising multime-
dia, tokenizing the multimedia enriched content post-
ing containing the command with a decoder, the mul-
timedia enriched content posting comprising at least
one of an image, video, and audio, including retriev-
ing amultimedia asset by following a local file path or
URL (Universal Resource Locator) path of a web
based asset, and scanning the multimedia asset for
malicious software and viruses prior to processing,
and extracting information from the multimedia asset
with a decoder to translate the multimedia asset into
tokens, and

wherein processing the content posting further com-
prises: semantically matching tokens to language

20

25

30

35

40

45

50

55

60

24

model definitions that define functions and operators
for the application domain, matching functions and
operators to corresponding code fragments and meth-
ods stored in a library unique to an application
domain, and assimilating the code fragments and
methods on-the-fly to generate executable code, com-
prising: fetching at least one of attributes, parameters,
and custom commands from a user profile associated
with a user that submitted the posting, fetching
assimilation definitions that map functions and opera-
tors within the language model definitions to code
fragments and methods, and fetching assimilation
rules which define the relationship between assimila-
tion definitions, declare which functions and opera-
tors can be combined to form legal connections, and
specify the proper sequencing of code fragments and
methods;

sending the request to the data source;

receiving a response to the request, the response compris-

ing raw non-manipulated data from the data source;
formatting the response in accordance with characteristics
of a preconfigured response delivery method; and
sending the formatted response for delivery as preconfig-
ured by the user.

2. The method of claim 1, wherein receiving the content
posting comprises:

polling the social media service to retrieve new content

postings with a GET method, the polling conducted at a
rate allotted by the social media service.

3. The method of claim 1, wherein the data source com-
prises at least one of an internal data resource and an external
data resource, and the data comprises dynamic data.

4. The method of claim 1, wherein processing the content
comprises:

semantically matching tokens to language model defini-

tions that define functions and operators for an applica-
tion domain; and

matching functions and operators to corresponding code

fragments and methods.

5. The method of claim 1, wherein processing the content
comprises:

assimilating the code fragments and methods dynamically

as needed to generate executable code.
6. The method of claim 1, wherein generating a request to
the data source comprises:
selecting one or more data sources dynamically as needed
based on a context of the content posting and configured
data sources supported by the application; and

formatting requests to one or more data sources by altering
a syntax of the request as needed to communicate with
the data source.

7. The method of claim 1, wherein receiving a response
from a data source comprises:

receiving and aggregating the responses from each data

source, wherein each response comprises raw non-ma-
nipulated data from the data source; and

parsing the data to extract desired data values in accor-

dance with an initial command, discarding extraneous
data values.

8. The method of claim 1, wherein formatting the response
comprises:

fetching a response delivery method preference from an

application user profile associated with the user that
submitted the content posting;

US 8,756,692 B2

25

fetching a pre-configured template associated with the
response delivery method user preference, the pre-con-
figured template conforming to a response delivery
method; and

inserting desired data values into the pre-configured tem-
plate.

9. The method of claim 1, further comprising:

receiving a request from a user to follow the social media
account associated with the application from a web page
associated with the application;

in response to the follow request, registering the user with
the application; and

automatically following-back the social media account
associated with the user with the social media account
associated with the application.

10. The method of claim 1, wherein the social media ser-
vice comprises at least one of Twitter, Facebook, MySpace,
Ning, FourSquare, Linkedln, WordPress, Tumblr, Google+,
Movable Type, LiveJournal, and Type Pad.

11. The method of claim 1, further comprising:

detecting from the command of the content posting that
multiple types of data are needed,

wherein transforming the command of a content posting
into executable code for generating a request to a data
source comprises generating separate request for sepa-
rate data types.

12. The method of claim 1, wherein the command includes

a delineator to indicate the command.
13. A non-transitory computer-readable medium storing
instructions that when executed by a processor, perform a
method for controlling network-based applications by pro-
cessing commands embedded within user-generated content
postings to a social media service, comprising:
Receiving a content posting associated with a user of the
social media service, the posting being submitted to the
social media service as a status update or message to the
social media account associated with the application;
processing the content posting to generate a request to a
data source, the request being a query for information or
an instruction to perform an action, comprising:
lexically parsing the content posting to identify the com-
mand,

responsive to the content posting comprising text, token-
izing a textual content posting containing the com-
mand with delimiters into tokens, the tokens compris-
ing a series of one or more of keywords, functions,
operators, and parameters,

responsive to the content posting comprising multime-
dia, tokenizing the multimedia enriched content post-
ing containing the command with a decoder, the mul-
timedia enriched content posting comprising at least
one of an image, video, and audio, including retriev-
ing amultimedia asset by following a local file path or
URL (Universal Resource Locator) path of a web
based asset, and scanning the multimedia asset for
malicious software and viruses prior to processing,
and extracting information from the multimedia asset
with a decoder to translate the multimedia asset into
tokens, and

wherein processing the content posting further com-
prises: semantically matching tokens to language
model definitions that define functions and operators
for the application domain, matching functions and
operators to corresponding code fragments and meth-
ods stored in a library unique to an application
domain, and assimilating the code fragments and
methods on-the-fly to generate executable code, com-

20

25

30

35

40

45

50

55

60

26

prising: fetching at least one of attributes, parameters,
and custom commands from a user profile associated
with a user that submitted the posting, fetching
assimilation definitions that map functions and opera-
tors within the language model definitions to code
fragments and methods, and fetching assimilation
rules which define the relationship between assimila-
tion definitions, declare which functions and opera-
tors can be combined to form legal connections, and
specify the proper sequencing of code fragments and
methods;

sending the request to the data source;

receiving a response to the request, the response compris-
ing raw non-manipulated data from the data source;

formatting the response in accordance with characteristics
of a preconfigured response delivery method; and

sending the formatted response for delivery as preconfig-
ured by the user.

14. A computing device to controlling network-based
applications by processing commands embedded within user-
generated content postings to a social media service, com-
prising:

a processor;

a memory; and

a social media interface to receive a content posting asso-
ciated with a user of the social media service, the posting
being submitted to the social media service as a status
update or message to the social media account associ-
ated with the application;

a command processing engine to process the content post-
ing to generate a request to a data source, the request
being a query for information or an instruction to per-
form an action, comprising:

a command parser to lexically parse the content posting
to identify the command, and responsive to the con-
tent posting comprising text, the command processor
to tokenize a textual content posting containing the
command with delimiters into tokens, the tokens
comprising a series of one or more of keywords, func-
tions, operators, and parameters, and responsive to the
content posting comprising multimedia, the com-
mand parser to tokenize the multimedia enriched con-
tent posting containing the command with a decoder,
the multimedia enriched content posting comprising
at least one of an image, video, and audio, including
retrieving a multimedia asset by following a local file
path or URL (Universal Resource Locator) path of a
web based asset, scan the multimedia asset for mali-
cious software and viruses prior to processing, and
extract information from the multimedia asset with a
decoder to translate the multimedia asset into tokens,
and

a code generator to semantically match tokens to lan-
guage model definitions that define functions and
operators for the application domain, the code gen-
erator to match functions and operators to corre-
sponding code fragments and methods stored in a
library unique to an application domain, and the code
generator to assimilate the code fragments and meth-
ods on-the-fly to generate executable code, compris-
ing: fetching atleast one of attributes, parameters, and
custom commands from a user profile associated with
a user that submitted the posting, fetching assimila-
tion definitions that map functions and operators
within the language model definitions to code frag-
ments and methods, and fetching assimilation rules
which define the relationship between assimilation

US 8,756,692 B2

27

definitions, declare which functions and operators can
be combined to form legal connections, and specify
the proper sequencing of code fragments and meth-
ods;

a data source query manager to send the request to the data
source, and receive a response to the request, the
response comprising raw non-manipulated data from the
data source;

a response formatter to format the response in accordance
with characteristics of a preconfigured response delivery
method; and

aresponse delivery service to send the formatted response
for delivery as preconfigured by the user.

#* #* #* #* #*

28

